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Problem

What defines a robust annotation process?

• Reliable annotations are key to building strong NLP 

models.

• Achieving a high Inter-Annotator Agreement (IAA).

• Some levels of disagreement are inevitable, particularly 

in subjective tasks. 

• This study explores the role of the annotator’s 

demographics features and text content in labeling 

decisions and investigates whether Generative AI 

(GenAI) models, guided by persona-based prompts, can 

substitute human annotators.



Data

• We used data from the EXIST 2024 challenge — the sexism detection tasks.

• We focused on Task 1—classifying tweets as sexist or not.

• Tweets in both English and Spanish

• Each tweet in the dataset was annotated by six individuals.

• The annotators' demographic features include:

Europe, America, Africa, Asia, and the Middle East. 



Our objectives

• Goal 1: Analyze the impact of demographic factors on annotation in the sexism detection task. 

• Goal 2: Evaluate the potential of GenAI models to replace human annotators. 

• Goal 3: Investigate whether incorporating XAI techniques, such as highlighting influential tokens identified 

by SHAP values, can improve the performance of GenAI models with human annotations.



Generalized Linear Mixed Model:

• We ran a mixed-effects logistic regression model to understand how annotators’ demographic features affect their labeling 

decisions. 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖 ~ gender + age + ethnicity + study level + region + (1 |lang/id_EXIST)+ (1 | annotator)• In R notation:
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The impact of demographic factors on annotation



• To address demographic and label-class imbalances, we assigned weights to each observation as follows:

• 𝑓𝑓𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 represents the relative frequency of a demographic 
category 

• 𝑓𝑓label represents the relative frequency of the label class.

• These weights were then normalized  dna scaled  ni  esu rof
dexim   eht-.ledom stceffe

• i.e., Female, aged between 23 -45, Black, bachelor’s degree, 
from Africa exhibit the highest weighted contribution.

• Annotators ’demographic features that are too rare , were 
removed  less than 2% of the pool of annotators

The impact of demographic factors on annotation



Do annotator demographic factors significantly influence labeling decisions?

• Comparison Between Mixed Models and Basic Models
• (ICC = 92.3%)
• tweet-specific characteristics significantly impact annotation 

outcomes, overshadowing the influence of demographic factors

• Gender and age group do not significantly influence labeling 
decisions.

• Black annotators are far more likely to label tweets as sexist and 
Latino annotators are less likely to do so compared to White 
annotators.

• Annotators with a high school degree are significantly less likely to 
label tweets as sexist.

• Annotators from Africa are significantly less likely to label tweets as 
sexist.

Key Findings from the Mixed Model:

The impact of demographic factors on annotation



1- BERT Model and SHAP Values:

• To classify texts as sexist or non-sexist, we use a multilingual BERT model 

• To incorporate explainability into our methodology, we use SHAP values. 

3- GenAI Models

• LLaMA 3.2 3B, LLaMA 3.3 70B

• OpenAI GPT-4o, GPT 4o-mini

2- GenAI Scenarios

• GenAIledom
• Persona-Driven GenAI (GenP)
• Explainable GenAI (GenXAI)
• Persona-DrivenExplainable GenAI (GenPXAI) We rely on previously computed important tokens from SHAP values

Annotation Process



1- BERT Model and SHAP Values
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• The top 50 tokens in 
English and Spanish—
40% of total 
importance in English 
vs. 45% in Spanish

• The top 20 English tokens by SHAP 
importance (e.g., slut, women, girls)

• The top 20 Spanish tokens by SHAP 
importance (e.g., masculino, mujeres, 
feminist)
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Defining the Personas:

Prompt Structure



Temperature and Sampling Strategy:

• Temperature = 0  The model produces deterministic (greedy) outputs 

• Temperature > 0  Randomness is introduced

Multiple Annotators and Majority Voting:

• Majority Voting  to determine hard labels (YES or NO for sexism) and Probabilities are calculated for soft labels.

• To simulate multiple annotators We prompt the model six times per text under each GenAI scenario and 6 temperature setting.

LLMs as human annotators

 XAI BERT 

GenAI



GenAI results

• Model Performance: OpenAI GPT-4o and GPT-4o-
mini perform best, while LLaMA 3.2 3B performs 
worst, with LLaMA 3.3 70B falling in between.

• Key Takeaways: Smaller models benefit more from 
XAI (GenXAI), while larger models need persona 
(GenPXAI) to offset potential performance drops; 



Future research & Next Steps

• Refining Persona Design:

Improve persona descriptions to better align with cultural and linguistic 

contexts, reducing potential biases in GenAI models.

• More XAI Techniques:

Exploring domain-specific explainability (XAI) methods.

• Expanding Language Coverage:

Studying more languages and dialects.



Discussion – Questions & Suggestions?

Any  Questions?

More Suggestions?



For further questions or details, please contact: 

h.mohammadi@uu.nl

Thank You!
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